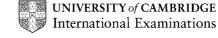
GCE Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/04

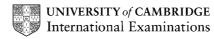
Paper 4 (Structured Questions A2 Core), maximum raw mark 60


This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum	minimum mark required for grade:					
	mark available	А	В	E			
Component 4	60	45	40	22			

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY Paper 4 (Structured Questions A2 Core)

Page 1			Mark Scheme Syllabus P				
			A LEVEL – JUNE 2005	9701	4		
1	(a)	(i)	Ammeter/galvanometer		[1]		
			Clock/watch/timer (or rheostat) (For items above 2 in number, e.g. voltmeter, pena	alise [1])	[1]		
		(ii)	Diagram to show ammeter (allow symbol) in circuit complete circuit with ⊖ terminal of power pack con		[1] [1]		
		(iii)	Volume/amount of hydrogen/gas				
			Time				
			Current/amps/ammeter reading (ignore extra measurements)		[1]		
				Part	(a): [7]		
	(b)	(i)	F = L x e		[1]		
		(ii) L = 9.63 x $10^4/1.6 \times 10^{-19} = 6.02 \times 10^{23}$ (must show working)					
			Allow 6.0 but not 6 or 6.01	Part	(b): [2]		
				Тс	otal: [9]		
2	(a)		The power/index/exponent to which a concentra a rate equation	ition term is	raised in		
			or ^a in rate = k [A] ^a (k is needed – or can use rate α	[A] ^a)	[1]		
				Part	(a): [1]		
	(b)	(i)	1 st order w.r.t. propanone		[1]		
			Zero order w.r.t. H ⁺ ions		[1]		
			1 st order w.r.t. CN⁻ ions		[1]		
		(ii)	Rate = k [propanone][CN ⁻] (e.c	.f. from (i))	[1]		
		(iii)	Mechanism B (or A – see grid below), with the firs see grid below) step being the slow step,	t (or second	- [1]		
		(since H ⁺ does not appear in rate equation) it must be involved after the slow step or [H ⁺] is not involved in slow step					
		Grid for e.c.f. in first mark of (iii)					
			Deductions in (i) or (ii) ECE deducti	(!!!)			

Deduct	ions in (i) or	(ii)	E.C.F. deductions in (iii)		
[Propanone] [CN ⁻]		[H⁺]	Mechanism	Slow step	
1	1	0	В	1 st	
1 0		1	A	1 st	
1 1		1	A or B	2 nd	
ŀ	Any other		No e.c.f. mark can	be awarded	

Part (b): [6]

Page 2			Mark Scheme	Syllabus	Paper
			A LEVEL – JUNE 2005	9701	4
3	(a)	(i)	It is an endothermic reaction, or taking in heat		[1]
			It has a high activation energy/E _a		[1]
		(ii)	MgCO ₃ will decompose at a lower temperature/ne	eds less ene	ergy [1]
			Mg ²⁺ is a smaller (ion) than Ca ²⁺ or Mg ²⁺ has high	charge dens	ity [1]
			So polarises/distorts the anion CO ₃ ²⁻ ion more eas [<i>or</i> LE(MgO) > LE(CaO)]	ily	[1]
				Par	t (a): [5]
	(b)		∆H = 82 – 178 = -96 (kJ mol ⁻¹)		[1]
				Part	t (b): [1]
	(c)		$[CaMg(CO_3)_2 \longrightarrow CaO + MgO + 2CO_2]$		
			M _r (CaMg(CO ₃) ₂) = 40.1 + 24.3 + 24 + 96 = 184.4		[1]
			$M_r(2CO_2) = 2 \times 44 = 88$		
			∴% loss in mass = $100 \times \frac{88}{184.4}$ = 47.7% (e.c Allow 48%. Also allow 48.8% if M _r = 184	.f. in 184.4)	[1]
			Anow 40%. Also allow 40.0% if $W_r = 104$	Par	t (c): [2]
				-	- 4 - 1. [0]

Total: [8]

Page 3		Mark Scheme	Syllabus	Paper
		A LEVEL – JUNE 2005	9701	4
(a)	(i)	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁶ 4s² or [Ar] 3d ⁶ 4s²		[1]
	(ii)	Coloured compounds/ions/solutions/ppts; paramagon oxidation state/valency/more than one ion; dense in melting point metals; are catalysts; form complexe	metals; high	
			Part	: (a): [3]
(b)	(i)	$MnO_{4}^{-} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$		[1]
		E ^e = 1.52 – 0.77 = 0.75V (allow e.c.f. 0.90V for Mn	O ₂	[1]
	(ii)	MnO ₄ ⁻ is purple/ highly coloured		[1]
		End point is first (permanent) pink colour or colou (Allow yellow-to-pink but not purple-to-pink)	rless-to-pink	[1]
			Part	(b): [4]
(c)		Water molecules are ligands, in that they coordina (to the Fe ion) with their (lone) pairs of electrons o		ve bonds
		pairs are donated.		[1]
		A complex ion is an ion/Fe ³⁺ surrounded by/joined $[Fe(H_2O)_6]^{3+}$	to ligands o	r [1]
			Part	: (c): [2]
(d)	(i)	Haemoglobin transports oxygen in the blood or fro	om lungs (to	tissues) [1]
	(ii)	CO forms stronger bonds to Hb/Fe ²⁺ than does O_2 affinity or bonds irreversibly or forms more stable		nigher [1]
			Part	(d): [2]
(e)		Reagent: $I_2 + OH^-$		[1]
		Observations - ethanol: yellow ppt ./antiseptic sme change	ll; methanol:	no [1]
			Part	: (e): [2]

Р	age 4									Paper
				A LEVEL – JUN	/EL – JUNE 2005				9701	4
5	(a)	$K_a = [RCO_2^{-1}][H^{+}]/[RCO_2H]$							[1]	
			Part (a)							: (a): [1]
	(b)	(i)	The more chlorine atoms in the molecule, the stronger the acid,						, [1]	
			due to the electron-withdrawing (inductive) effect of Cl either stabilising the anion, or spreading (-) charge more, or weakening the O-H bond in the acid, or increasing ionisation or facilitates H ⁺ donation or causing the equilibrium RCO ₂ H = RCO ₂ ⁻ + H ⁺ to lie further to the right. Mark is conditional on reference to the effect of presence of							
		(ii)	chlorine.	0.1 x 1.4 x 10 ⁻³)	_	0.011	8 (mol dm ⁻³)	allow (1 012	[1]
		(11)								
		<i></i>		log ₁₀ (0.0118)	=	1.93	Allow 1.9	or 1.92	e.c.f.	
		(iii)	pK _a = -lo	g ₁₀ (5.5 x 10⁻²)	=	1.26	Allow 1.3			[1]
									Part	(b): [6]
	(c)	(i)	C <i>l</i> ₂ (aq) A	A <i>l</i> Cl ₃ or UV nega	ates					[1]
		(ii)	Electrop	hilic substitution	or a	addition	-elimination			[1]
				hilic substitution mark is awarde ion x2					•	oup [1]
		(iii)	or: or: or: or:	add Br ₂ (aq) add FeC <i>l</i> ₃ (aq) add NaOH(aq) add UI solution add "diazonium case, A give no	ph ph ph "to s ph	enol giv enol dis enol go solution enol giv	ve a purple o ssolves pes yellow/o	colour range (A stays	
			or: or: or: or:	add $Cr_2O_7^{2-}/H^+/$ add $MnO_4^-/H^+/w$ add $PCl_5/POCl$ add $CH_3CO_2H^-$	varm ₃/PC	n A ch ≳ <i>l</i> ₃/SOC	nanges from Cl ₂ A	purple gives	to colou fumes	irless
			(in each	case, no change	e wit	h phen	ol)			
						Test +	reagents [1]	Both	observat	tions [1]
									Part	: (c): [5]

Total: [12]

Page 5			Mark Scheme	Syllabus	Paper
			A LEVEL – JUNE 2005	9701	4
6	(a)	(i)	Electrophilic substitution or nitration		[1]
		(ii)	$HNO_3 + H_2SO_4$		[1]
			(both) conc., and at $50^{\circ}C \le T \le 60^{\circ}C$		[1]
		(iii)	NO ₂ ⁺		[1]
			H NO ₂ etc. or H NO ₂		
					[1]
			H⁺		[1]
				Par	t (a): [6]
	(b)	(i)	Reduction		[1]
		(ii)	Sn/Fe/Zn/SnC l_2 + HC $l/H^+/H_2SO_4$ (but not conc. H ₂ S or H ₂ + Ni/Pt (not LiA lH_4)	SO ₄)	[1]
				Part	t (b): [2]
	(c)		PCl ₅ /PCll ₃ /SOCll ₂ /POCl ₃ (+ heat) aq nega	tes	[1]
				Par	t (c): [1]
	(d)	(i)	An amide, not peptide		[1]
		(ii)	Heat with H_3O^+ or heat with $OH^-(aq)$		
			Or warm (not heat/reflux) with aqueous amidase/p enzyme/trypsin/chymotrysin/pepsin/papain etc.	eptidase/pro	otease not [1]
				Part	t (d): [2]
				То	tal: [11]